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Two model potential approximations to the pseudopotential operator are discussed. Suitable 
simple expressions for an atomic model potential with angular projection are given, the parameter 
values of which can be fitted to reproduce the Rydberg series rather accurately. Calculations on atomic 
states with several valence electrons from the first two and a half rows of the periodic system show 
that energies of chemical interest are accurate to 0.0-0.2 eV. The pseudo-wave functions have an 
accuracy of a few %. 
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1. Introduction 

One of the disadvantages of quantum chemical ab initio calculations on 
heavy atomic molecules is the necessity to treat all the electrons of the system, 
although one knows from chemical experience that only the valence electrons 
are relevant to their static and dynamical properties: In pseudopotential theory 
one attempts to reduce the quantum mechanical all-electrons problem to a 
valence-electrons-only problem. 

Given an effective one-electron operator h (h is not necessary to be a linear 
operator, e.g. may be some type of Hartree-Fock-operator) 

The complete set of orbitals ~i consists of the core orbitals q~c and the valence 
and virtual orbitals ~ (with core orbitals we mean those atomic orbitals, which 
are - in a localized orbital scheme - nearly invariant to molecular formation). 
In pseudopotential theory [1, 2] the following effective one-electron pseudo-Fock 
equation is used: 

where the pseudo-hamiltonian h is given by 

o c t  o c c  

----- t + [g/core -~ E ( J r ,  - Kv,) Jr- 2 I~}c) (~v - ~c) (~bcl (1) 

where V~ore is the Hartree-Fock potential of the core 1. 

* This work is dedicated to the 60th birthday of Prof. H. Hartmann. 
1 More general hermitean and non-hermitean operators are derived and discussed by Schwarz [3] 

and Austin et al. [4], resp. 
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In the next section we discuss some problems arising from the last term of 
Eq. (1), the so called pseudopotential Vps. In order to cast the pseudopotential 
method into an appropriate calculational scheme, it is necessary to introduce 
several approximations, especially into the third term of Eq. (t). The resulting 
accuracy of energies and wave-functions is investigated in Section 3 on the basis 
of SCF and correlation calculations on many terms of atoms and ions. In the 
fourth section we point out the difficulty connected with the second term of Eq. (1), 
V~o~,. In the conclusion some general statements on the accuracy and limitations 
of the pseudopotential method are made. 

2. Model Potential Approximations 

In Eq. (1) the eigensolutions of h are also eigensolutions of i.  The last term 
of i, the pseudopotential operator Vvs, raises the eigenvalues of the ~b c up to G, 
so that the core orbitals become degenerate with the valence orbitals, and the 
lowest eigenvalues of h are just.the valence orbital energies of h 2. Therefore it is 
not necessary to keep the valence solutions orthogonal to the core solutions in 
this type of valence electron calculations. In particular one can pick out from the 
degenerate set {~bcl, ~bc2, .. . ,  ~bv} one orbital ~v, which resembles the canonical 
valence orbital outside the core, but has no nodes within the core region and is 
smooth there. This means that it is possible to represent one "pseudo-valence 
orbital", belonging to ,v, quite accurately using a small basis set of STO's or 
GTO's, or to calculate this pseudo-orbital by numerical integration using a 
rather coarse grid 3. By this, one selects just one smooth pseudo-orbital from the 
degenerate set. There will be no significant loss of accuracy in the corresponding 
orbital energy. However, a significant reduction of computing time may be 
gained, if reasonable simplifications are introduced into the exact pseudohamilto- 
nian of Eq. (1). Two approximations for Vv~ have often been used. The one shall 
be referred to as the angular projection and the other  as the core projection 
model potential, which will now be discussed. 

2.1 Core Projection Model Potential 

In this approximation scheme the given form of Vvs is retained: 

V] ~ Z Z I~Pr (~JI .  (2) 
A c~A 

The qA'S are constants, which may be taken as the difference between atomic 
SCF core orbital energies and a representative valence orbital energy [7, 8]. The 
~A's are approximations to the core orbitals ~b A of free atom A (e.g. minimal 
basis STO's). But now the degeneracy of core and valence orbitals is destroyed: 
1) the pseudovalenee orbital is no longer smooth, but has nodes as the canonical 
valence orbital. 2) In general one cannot prevent the lowest solution of 

2 This statement is not exactly correct, see. Ref. [5]. 
3 This forms the basis of the atomic pseudopotential calculations of Szasz and McOinn, see 

e.g. Ref. [7]. 
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from collapsing into the core, especially for heavier atoms where only in some 
cases one can help by properly raising the parameters qc 4. 3) The core orbitals 
are raised into the energetic region of the excited MO's and low continuum 
functions and disturb the corresponding molecular states. An extreme example 
has been found for the He atom. It was impossible to reproduce either the low 
energy electron scattering cross sections or the He-Li potential curves within 
the core projection approximation scheme, even if the Slater exponent ~c in ~o~ 
was treated as an additional adjustable parameter. 

These difficulties may be overcome by choosing a suitable basis for the valence 
electrons to force the pseudo orbitals to be smooth and not too low in energy 5. 
Corresponding molecular calculations have recently been carried out by 
McWeeny et al. [-10-12] with success, although their pseudopotential core 
parameters and molecular results are dependent on the basis [11]. 

2.2 Angular Projection Model Potential 

In the angular projection approximation scheme one uses the following 
molecular pseudopotential 

VB2 g= Z Z VzA(rA) " p A, (3) 
A l e A  

where l are the angular quantum numbers of the shells in atomic core A. The 
projection operator Pz A projects onto the one electron orbital subspace of angular 
momentum l with reference to center A. If one calculates an atomic orbital of 
angular momentum l, the corresponding one-dimensional equation contains only 
an r-dependent local potential term Vz(r ). Therefore the node-theorem holds and 
the lowest pseudovalence orbital will automatically be nodeless and smooth. 
Furthermore, the difficulties due to the above mentioned degeneracy can be 
avoided. In ansatz (3) one adjusts V t instead of ~/ and ~0 in ansatz (2). Since the 
number of core shells c is usually greater than the number of different/-values, 
the angular projection approach needs less parameters than the core projection 
approach 6. 

The only disadvantage of the angular projection potential is, that in molecular 
calculations the three-center (and some of the two-center) one-electron integrals 
are difficult to compute accurately [-8, 14]. However, if one uses gaussian type 
potential functions V~ together with a gaussian lobe basis, the integrals can be 
calculated in a simple manner. (The corresponding formulae are given in the 
Appendix.) In the case of an STO basis one can apply the simple integral approxi- 
mation scheme of Schwarz [2] which has been shown to give satisfactory results 

4 McGinn [9] remarked that his atomic pseudopotential SCF-calculations on Ag did not properly 
converge when he used a minimal basis for the core. 

5 In this respect we remind of the analysis of valence-only calculations by Zerner [131 who 
explicitely introduced the presupposition of minimal basis. This means that part of the pseudopotential 
effect has to be taken over by the basis. 

6 Another disadvantage of the core projection is, that direct numerical integration oftbe Schr6din- 
ger equation, e.g. for electron scattering, is not possible but must be performed iteratively. 
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Table 1. SCF-results on Bel l  2 (Be - H = 2.54 %; energies in - a.u.) 

Full SCF Corrected ~ Pseudo-SCF Pseudo-SCF Ref. [17] 
energy (Integ.-approx.) 

E (Valence system) 2.152 2.166 2.171 2.167 
Bond energy 0.190 0.204 0.205 0.201 
e(2ag) 0.499 0.503 0.490 0.489 0.392 
e(rr,) 0.438 0.442 0.449 0.449 0.464 

a Corrected for core-valence correlation and relativistic effects (see Section 3.2, Eq. (4)) 

[ 15, 16]. Recently Schwartz obtained bad results in her Bell 2 and BeO calculations 
[-17]. However, our Bell2 calculations using both exact and approximate integrals 
give results in good agreement with full SCF-calculations (see Table 1). 

As the conclusion of this section we find that the angular projection approxi- 
mation is a quite suitable scheme. 

3. Necessary Approximations in the Pseudohamiltonian 

In order to be a convenient alternative to ab initio methods, the pseudo- 
potential approach should lead to a significant reduction and simplification of 
molecular calculations. Therefore the following two approximations are 
introduced. 

1) Frozen core approximation. Although the 2nd and 4th terms in Eq. (1), 
V~or0 and Vps, are integral operators depending on the molecular core solutions, 
V~or~ and the V{s are approximated by simple local and only r-dependent model 
potentials summed over the frozen atomic cores of the molecule. 

2) Pseudovalence interaction approximation. To calculate the 3rd term, the 
valence electrons interaction, by using the exact valence orbitals v is quite time 
consuming. As approximation this term is calculated using the smooth pseudo- 
valence orbitals ~. 

In a theoretical analysis of the model potential method [-2] it was shown 
that both approximations may result in rather large errors, which are expected 
to be of different signs. In the latter part of this section we will investigate the 
effects of these errors by numerical calculations. 

3.1 Atomic Model Potentials 

We adjust the model potentials to experimental atomic expectation values. 
Therefore V~or~ not only represents the Hartree-Fock potential of the closed shell 
atomic cores, but also includes core-valence electron correlation and relativistic 
corrections in a rough empirical way. We have tried different simple formulae 
and obtained the best results with a screened Coulomb potential 

~ o r e =  - -  Zc~-A/r'exp(-~r). 
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Table 2. Atomic model potential parameters for the first two rows of the periodical system 

Family First row: ls2-core Second row: ls 2 2s 2 2p6-core 

Atom A e (opt) Bo (opt) /~o Atom A c~ (opt) Bo (opt) /~o B1 (opt) /~1 

O He 2 1.3 25 2.2 Ne 3 1.15 46 2.7 24 2.2 
I Li 2 2.3398 60.28 3.6 Na 4 1.550 91.17 3.3 48.69 2.8 
II Be 2 3.3610 115.20 5.0 Mg 5 2.125 135.31 3.9 70.47 3.4 
III B 2 4.3630 188.40 6.4 A1 6 2.625 199.4 4.5 103.7 4.0 
IV C 2 5.3608 279.33 7.8 Si 7 3.133 277.5 5.1 144.6 4.6 
V N 2 6.3537 387.85 9.2 P 8 3.660 369.0 5.7 192.9 5.2 
VI O 2 7.3405 514.46 10.6 S 9 4.210 474.1 6.3 248.45 5.8 
VI~ F 2 8.3132 658.60 12.0 CI 10 4.750 591.9 6.9 310.7 6.4 
VIII Ne 2 9.282 820.8 13.4 Ar 11 5.361 724.7 7.5 381.15 7.0 

Table 3. Si IV Rydberg spectrum (energies in eV below ionization limit) 

Term Exp. Calc. 

3s 45.142 45.141 
3p 36.266 36.265 
3d 25.257 25.258 
4s 21.129 21.091 
4p 18.071 18.067 
4d 14.139 14.145 
4 f  13.632 13.634 
5s 12.254 12.234 
5p 10.856 10.866 
5d 8.997 9.001 
5 f  8.728 8.725 
59 8.708 8.711 
6s 7.996 7.987 
6p 7.246 7.244 
6d 6.212 6.221 

Z c is the charge of the atomic core. A should be of the order of the number of 
electrons in the outer shell of the core. As V~oro simulates not only the HF-part, 
but also the far reaching polarization part of the effective core potential, e should 
be significantly smaller than twice the Slater exponent of the outer core shell. We 
have determined c~ so that the experimental Rydberg term values of the system 
"atomic core 4- one valence electron" with angular momentum l >  lra~ are 
reproduced. Here /Max is the largest/-value in the core. In the case of the neutral 
rare gas cores we adjust c~ according to the corresponding low energy electron 
scattering cross section. A variation of the second parameter A has no large 
effect on the accuracy of the results. Therefore we have fixed it to a suitable integer 
number and adjusted only the parameter ~. The parameter values for the first 
two rows of the periodical system are given in Table 2. With this V~oro the Rydberg 
series can be calculated with an accuracy of about 10 -3 as shown for Si in Table 3. 
By adjusting both parameters A and e, a higher accuracy could be obtained. 
However, many-valence-electrons states, which come out less accurate, are 
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insensitive to such an adjustment. The normal mass effect has also not been 
taken into account. 

Similarly the pseudopotentials V z have been adjusted to Rydberg terms of 
angular momentum l < lmax. A suitable ansatz is 

V l(r) = B t �9 e x p ( -  flz" r). 

fit describes the hardness of the core-shells with angular momentum 1, into which 
the corresponding valence electrons are forbidden to penetrate. Therefore the 
/~z should be larger than e. Furthermore, because an np shell is more diffuse than 
an ns shell, one has/?0 >/~1. We have first chosen suitable values for /~  which 
increase linearly within one row and then optimized the remaining parameters 
B I. The parameter values of B l and/31 are given in Table 2. In addition to the 
l >/Max Rydberg series, the s and p Rydberg series are also obtained with high 
accuracy. Our results (Table 3) are much better than other calculations which 
approximated the "effective potential" V~ff = (V~ore + ~ by some simple formula. 
The reason seems to be that our ansatz can lead to a local maximum of the "effec- 
tive nuclear charge" Zlefe = - V~ff. r at medium large r-values, which is necessary 
for a good representation of the effective potential [2]. 

For  molecular calculations we use the ansatz 

Vt(r) = Cl" exp(-- ?l" r2) �9 

The resulting multi-center one-electron integrals can be easily calculated (see 
Appendix). 

3.2 A t o m i c  M o d e l - P o t e n t i a l  Calculat ions  

With these potentials we have calculated nearly 100 many-valence-electrons 
terms of various atomic ions of the first two rows of the periodic system, using 
the Roothaan-Hartree-Fock method [6]. Some typical results are given in the 
following tables. To compare our model-SCF-energy values with the experimental 
or full SCF-results, one must keep in mind that the empirical pseudopotentials 
allow for core-valence correlation and some relativistic effects. That is the total 
model-potential valence electrons energy, Eps, is assumed to represent the "cor- 
rected" energy values 

+E  core-valence rT, valence 
E ...... t. = Escv (atom) - Esc F(cOre) . . . . .  lat. "~- 17., relat. (4) 

= Eex p(atOm--+ core ion) ~.int ..... I .... - -  L ,  correlat. - 

The necessary E ..... lat. and E r e l a t .  values have been taken from the literature [19] 
or estimated. 

Energy values for first row atoms are shown in Table 4. The accuracy of 
E ...... t. and e ...... t. is estimated to be in the range of a few 0.01 eV; this should also 
be the accuracy of our pseudo-SCF results. According to Table 4 the errors in 
the total energies are within a few ~ o. As predicted by Schwarz [2] the largest 
errors occur for systems with many valence electrons and a high Zc-value (as 
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Table 4. Model-potential results for the ground states of first row atoms and ions (in negative eV) 

Ion Valence Total valence energy Valence orbital energies 

Config. State Ep~ (SCF) Ecorreet. A 2S%s 2S%orrect. A 2pep~ 2p%orrect ' zl 

Li 2s 2S 5.39 5.39 (0.00) 5.39 5.39 (0.00) 
Be 2s 2 1S 26.31 26.32 0.01 8.47 8.51 0.04 
B 2s2p 2po 69.86 69,44 - 0.42 13.62 13.69 0.07 
C 2s2p2 3p 145.69 145.35 - 0 . 3 4  19.31 19.31 0.00 
N 2s2p 3 4S0 264.20 263.50 - 0.70 25.98 26.06 0.08 
0 2s2p 4 3p 428.98 427.98 - 1.00 34.32 34.37 0.05 
F 2s2pS 2po 653.60 652.02 - 1.58 43.49 43.0 - 0 . 5  

F 6+ 2s zS 185.18 185.18 (0.00) 185.18 185.18 (0.00) 
F 5+ 2s 2 1S 339.52 339.32 - 0 . 2 0  154.62 154.49 -0 .13  
F4+ 2s2p 2po 454.44 453.50 - 0 . 9 4  127.65 127.36 -0 .29  
F3+ 2s2p2 3p 541.87 540.53 - 1.34 102.80 102.41 ~0.39 
F z + 2sZp 3 4S~ 604.46 602.88 - 1.58 80.13 79.70 - 0.43 
F 1 + 2s2p4 3p 637.85 636.24 - 1.61 60.47 60.04 - 0.43 
F 0 2s2pS 2p0 653.60 652.02 - i.58 43.49 43.0 - 0 . 5  

L i -  2s 2 as 5.25 5.4 0.15 0.36 0.30 - 0 . 0 6  
Be 2s 2 1S 26.31 26.32 0.01 8.47 8.51 0.04 
B + 2s 2 1S 61.49 61.42 -0 .07  23.88 23.88 0.00 
C 2+ 2s 2 1S 110.45 110.40 -0 .05  46.27 46.25 - 0 . 0 2  
N 3+ 2s 2 aS 173.12 173.02 - 0 . 1 0  75.53 75.46 -0 .07  
0 4+ 2s 2 1S 249.48 249.34 - 0 . 1 4  111.65 111.55 - 0 . 1 0  
F 5+ 2s 2 1S 339.52 339.32 - 0 . 2 0  154.62 154.49 -0 .13  

8.48 8,50 0,02 
l 1.90 11.87 -- 0.03 
15.57 15.54 -0 .03  
17.29 17.30 0.01 
19.90 19.95 0.05 

115.50 114.80 -0 .70  
88.45 88.01 - 0 . 4 4  
64.11 63.85 -0 .26  
39.47 39.36 - 0.11 
19.90 19.95 0.05 

e.g. F ~ where the calculated energies are low by the order of 1 eV. Fortunately 
for weakly charged ions and excited states of the atom, which play a role in 
chemistry and chemical bonding, the energy errors are nearly equal (within 
0.1 eV; compare e.g. the ground states of F ~ F +, F2+).  Therefore energy differ- 
ences of chemical interest can be calculated with an accuracy of about 0.1 eV. 
The orbital energies are obtained with the same accuracy except for fluorine. 

We have also applied Sinano~lu's Many Electron Theory [20] to the first 
row atoms and ions. Using the model potential approximation our preliminary 
results show that the internal and semiinternal correlation energies calculated 
for the valence electrons differ less than 0.1 eV from the exact results. 

The results for the second row atoms (Table 5) look quite similar. The errors 
are a little larger. The orbital energies seem to be too high by about 0.2 eV. (The 
"corrected" energy values are accurate only within 0.1-0.3 eV because of the 
uncertainty of some of Eexp values as well as of the E ..... lat. and Er,lat. estimates.) 
Nevertheless, the conclusion on the term values of chemical interest still holds. 
To give a further example, we show the energies of the seven terms of neutral 
P in Table 6. 

As mentioned at the beginning of Section 3 the errors in the model potential 
calculations have their origin in the one-electron-operator (the core and pseudo- 
potentials are assumed to be independent of the surrounding of the atomic core) 
and in the two-electron operator approximations. Our calculations have shown, 
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Table 5. Model-potential results for the ground states of second row atoms and ions (in negative eV) 

Ion Valence Total valence energy Valence orbital energies 

Config. State Eps(SCF) Eeorrect. A 2S~ps 2Secorrect. A 2pep~ 2pecorrect. A 

Na 3s 2S 5.14 5.14 (0.00) 5.14 5.14 (0.00) 
Mg 3s 2 1S 21.79 21.83 +0.04 7.04 7.2 0.1 s 
A1 3s2p 2p0 51.82 51.8 - 0 . 0 2  10.86 11.1 0.25 
Si 3s2p2 3p 101.21 100.9 - 0 . 3  14.88 15.1 0.25 
P 3s2p a 4S~ 174.73 174.0 - 0 . 7  19.18 19.4 0.25 
S 3s2p4 ap 273.33 272.2 - 1.1 24.25 24.5 0.2 
CI 3s2p 5 2p0 404.96 403.0 - 2.0 29.70 29.9 0.2 

CI 6+ 3s zS 114.30 114.30 (0.00) 114.30 113.4 0.1 
C15+ 3s 2 1S 209.87 209.3 - 0 . 6  95.71 95.8 0.1 
C14+ 3sZp 2p0 277.38 276.4 - 1.0 80.52 80.6 0.1 
C13+ 382p2 ap 330.59 329.5 - 1.1 66.22 66.3 0.1 
CI 2+ 3s2p 3 4S~ 370.36 368.4 - 2 . 0  52.75 53.0 0.2 
C1 + 3s2p~ 3p 392.99 391.0 - 2.0 40.61 40.9 0.3 
C10 3s2p5 2p0 404.96 403.0 - 2.0 29.70 29.9 0.2 

N a -  3s z 1S 4.95 5.2 0.2 0.18 0.4 0.2 
Mg 3s 2 1S 21.79 21.83 0.04 7.04 7.2 0.15 
A1 + 3s 2 aS 46.24 46.3 0.06 18.01 18.2 0.2 
Si 2 + 3s 2 1S 77.49 77.5 0.0 32.52 32.7 0.2 
p3+ 3s 2 1S 115.22 115.2 0.0 50.35 50.5 0.15 
S 4+ 3s 2 1S 159.30 159.2 -0 .1  71.40 71.5 0.1 
C15+ 3s 2 1S 209.87 209.3 - 0 . 6  95.71 95.8 0.1 

5.80 5.9 0.1 
8.20 8.3 0.1 

10.82 10.9 0.1 
12.04 12.2 0.2 
13.96 14.1 0.2 

67.73 67.4 - 0.4 
53.55 53.2 - 0 . 4  
40.28 40.0 - 0.3 
25.90 25.9 0.0 
13.96 14.1 0.2 

Table 6. Different terms of neutral phosphorus (energies in - eV) 

Term E,~ Ecorrect. A 

�9 3s2p 3 4S~ 174.73 174.0 - 0 . 7  
2D~ 172.75 172.1 -0 .65  
2pO 171.47 170.8 s -- 0.6 

3sp'* 4p 166.40 165.6 - 0 . 8  
2D 162.45 161.8 -- 0.65 
2S 160.52 159.9 - 0 . 6  
2p 158.60 158.1 - 0 . 5  

that in most cases the pseudovalence electron interaction energy is larger than 
the SCF value (for an example see Table 7) and that this interaction energy dif- 
ference is overcompensated by the model potential contribution. Accordingly 
the orbital energies have a more favorable compensation than the total energies 
(except in the case of F) because the electron interaction occurs twice in the 
orbital energies. 

Finally we discuss the pseudo valence orbital functions. They reproduce the 
main maximum and tail of the canonical SCF quite well. Some (r")-values for 
the valence orbitals are shown in Table 8. Generally the pseudo-results are smaller 
than the SCF results by 0.5-1.5% for n=  1, 2-3% for n=2,  4-5% for n=3,  and 
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Table 7. Valence electron interaction energies in F and Cl-ions (in eV) 

Ion Pseudo SCF A 

F s+ 30.28 30.40 -0 .12 
F 4 + 83.63 84.05 - 0.42 
F 3+ 159.37 159.74 -0 .37  
F 2 + 251.88 252.07 - 0.19 
F a + 359.03 358.88 0.15 
F ~ 466.97 466.24 0.73 

C15 + 18.45 18.42 0,03 
CI 4 + 48.53 48.62 0.09 
C13 + 91.01 90.96 0.05 
CI 2 + 143.97 143.48 0.49 
C11 + 208.12 206.82 1.30 
C1 ~ 275.74 273.68 2.06 

271 

Table 8. Valence orbital (r")-expectation values for F (2p) and P (4S) 

n Relativistic Pseudo Relativistic Pseudo 

SCF SCF SCF SCF SCF SCF 

- 2  F2s: 8.69 8.76 1.86 P3s: 2.71 2.78 0.42 
- 1 1.45 1.45 1.22 0.695 0.698 0.600 

1 1.001 1.000 0.999 1.933 1.927 1.923 
2 1.217 1.214 1.201 4.35 4.32 4.25 
3 1.754 1.747 1.718 1 H 5  11.06 10.73 
4 2.957 2.942 2.882 32.4 32.1 30.8 

- 2  F2p: 2.395 2.398 2.420 P3p: 0.716 0.716 0.319 
- 1 1.272 1.272 1.278 0.570 0.570 0.516 

1 1.085 1.085 1.080 2.323 2.321 2.300 
2 1.544 1.544 1.531 6.39 6.38 6.21 
3 2.771 2.771 2.733 20.36 20.31 19.43 
4 6.074 6.077 5.954 74.3 74.0 69.7 

5-7 % for n---4 in the second row, whereas in the first row the differences are 
only one half to one third of this. For n < 0 the pseudo-results are without any 
sense except for n = - 1, where they are "only" about 20% too low. For valence 
orbitals which have no precursors in the core as 2p in the first row atoms, the 
results for n < 0 are as good as for n > 0 and a little larger than the SCF values. 
All these results are quite to be expected. The model potentials are adjusted to 
experimental energies which are lower than the SCF-values because of the rela- 
tivistic and correlation effects. Therefore the pseudo-orbitals vanish faster than 
the SCF-orbitals for large r-values. They should describe the valence electron 
density better. 
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4. The Frozen Core Approximation in the Case of d andf Electrons 

Calculations on heavier atoms can give results of similar accuracy except in 
cases where d and f electrons play a role. As an example we will discuss the results 
of our titanium calculations. From chemical intuition one would include the 
3s and 3p electrons into the core. Consequently one has to adjust the effective 
model potential of the Ti 4+ core to the Rydberg spectra of Ti 3+. However, the 
corresponding pseudo-energies for different terms of Ti 2+, Ti § and Ti came 
out higher by 1-3 eV. The reason is that the frozen core approximation is not 

Table 9. ( r  2) values for 3s and 3p orbitals in titanium 

Ion Config. Term 3s 3p 

Ti a+ 1S 1.101 1.236 
Ti 3+ 3d eD 1.145 1.316 
Ti 1 + 3d 4s 2 2D 1.147 1.340 
Ti 2 + 3d 2 3F 1.184 1.391 
Ti ~ 3d 2 4s 2 3F 1. 180 1.405 
Ti a + 3d 3 4F 1.211 1.453 
Ti ~ 3d 4 5D 1.230 1.470 

Table 10. SCF-results for titanium 

Ion Config. Term Valence electrons energy (in eV) 

Full SCF Ecorrect. Pseudo 

Ti 4+ 3d ~ 1S 0 0 0 

Ti 3 + 3d 2D 42.41 43.2 s 43.25 
4s 2S 32.36 33.3 33.28 
4p 2p 26.70 27.35 27.32 

Ti 2 + 3d 2 a 3F 69.11 70.8 70.82 

a ID 67.73 69.45 69.46 
a 3p 67.44 69.15 69.17 
a aG 66.96 68.65 68.70 
a 1S 63.95 65.65 65.68 

3d 4s a 3D 64.35 66. 0 66.10 
b 1D 63.84 65.5 65.38 

Ti + 3d 3 b 4F 81.50 84.05 84.10 
a 2G 80.11 82.65 82.74 
a gP 80.10 82.65 82.74 
a 2p 79.65 82.2 82.29 
a 2H 79.65 82.2 82.29 

3d 2 4s a 4F 81.94 84. 3 84.50 
a 2F 81.23 83. 6 83.43 
a 2D 80.38 82. 7 82.80 

3d 4s 2 c 2D 77.96 80.s 80.21 

Ti ~ 3d 4 a 5D 83.27 86.6 s 86.77 
3d 2 4s 2 a 3F 87.47 90. 6 90.25 

a 1D 86.17 89.3 88.99 
a 1G 85.45 88.5 88.29 
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applicable in this case. As the 3d shell is not well separated from the 3s and 3p 
shells, the interaction of 3d electrons with the 3s and 3p ones expands the core 
significantly (see Table 9). To account for the valence dependence of the core, 
the Vr is chosen to depend on the d population, n d. We obtained an accuracy 
similar to other atoms like C or Si by using a parameter A which is a parabola 
quadratic in rid. The results obtained with the potential 

Voff (Ti 4 +) -- - ~ - (11.08 + 0.205. nd - -  0 . 0 1 5 .  nZ)/r  �9 exp (-- 2r) 

+ is) 285.5. exp(-- 3.6r) (s[ + IP) 181.9. exp(-- 3.2r) (Pl 

(adjusted parameter values underlined) are given in Table 10. Although the 
agreement is satisfactory, the situation is not so pleasant. Firstly the number of 
adjustable parameters is now increased. Furthermore, in order to adjust these 
additional parameters one has to perform a series of calculations for several 
many-valence electron terms to match the c o r r e c t e d  energy values [see Eq. (4)]. 
Therefore the determination of the model potential is rather expensive. Finally, 
molecular calculations are complicated by the fact that during the SCF iteration 
the atomic d-populations have to be determined in order to get a selfconsistent 
value for A. An alternative would be to treate the total M-sheU as a valence shell 
[12]. But then the gain in saving the computational effort in such pseudopotential 
calculations is not significant enough to justify the loss in accuracy compared 
to a full calculation. It seems that the pseudo or model potential method is not 
so suitable for transition metal elements. 

5. Conclusion 

If high accuracy is not required, the model potential method using empirically 
adjusted angular projection potentials seems to be a computationally simple 
alternative to ab in i t io  calculations on atoms and molecules (perhaps excluding 
systems involving transition metals). 

The errors in the total SCF energy will increase from the left to the right 
side of the periodic system and also for the heavier atoms. Since these errors are 
nearly equal for ground and excited states of neutral and weakly charged atoms, 
they will cancel to a large extent in chemical applications. Core-valence correla- 
tion and some relativistic effects are already included in these values. Intra- 
valence correlation can be obtained rather accurately by usual valence CI; the 
error of the total energy is mainly determined from the quality of the SCF result. 

The valence electron distribution outside the core can also be obtained quite 
accurately. Therefore the pseudo-wavefunction can be applied to calculate those 
expectation values which mainly depend on the outer parts of the wave function 
as electric and magnetic polarizability or valence excitation transition proba- 
bilities. 

Relativistic effects in the valence shell, especially spin-orbit interaction, begin 
to play a role in the third row of the periodic system. Because most terms of the 
Breit hamiltonian have large contributions from the core region it is not trivial 
to extend the model potential scheme to heavy atoms. Work on this subject is 
in progress. 
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Appendix 

The multicenter one-electron model potential integral 

Int = <q~B[1) V~A(II~pC) 

with gaussian lobe orbitals at centers B, C and gaussian model potential at center 
A # B, C can be solved in closed form. With A B  = R e and A C =  R c it explicitely 
reads as 

= B A C ,  . �9 �9 Int X ~g!m,,(O, 0)" ~ r 2 .  dr a {B l e x p ( -  fl, r2)} 
m ' ~ m "  0 

�9 {.(Sd cos~9~, dq~ .  Ytm' (O~, q~)" exp(-- eB(r~ -- RB)2)} 

�9 {.[.fd cos0~,  dq~" YZm"(8~, q~)" exp(-- (c ( r~-  Re)2)} 

where O~, ~b~ refers to the axis A B  and 0~, ~b~ to A C  and r~ means r A �9 (sin 8' cos qT; 
sin 8' sin qT; cos ~'). Using the formula 

e-r --- e-r L (21'+ 1)" Pr (cosSa). Mr(2(BR ~ �9 rA) 
1'=0 

where Pl is the Legendre polynomial and M z the modified spherical Bessel function 
of the first kind, one obtains 

2 2 
e -  ~BRB - ~ c R c  Int = Bl .  P t ( cosBAC) .  �9 4n(21 + 1) 

oo 

�9 .( r~  d r  n �9 e -  ~ + ~B + ~ ) ~ .  Ml(2 (BRB. ra). Ml(2 ( c R c .  rA ) 
0 

= B t" P~ (cos B A C). [n/(fl, + ~B + (c)] ~'5" (21+ 1) �9 e x p ( -  A) 

�9 M~ [2G~cgP~c/(~ + G + ~c)] 
with 

A = [(p, + ~c) GR~ + (/~, + G) ~cR~)]/E/~ + G + ~A. 

Here we have used formula No. 15.31 from Ref. [18]. 
In order to obtain an accuracy of better than 10 -13 the following formulae 

are suitable 
M o ( Z ) g  1 + Z 2 / 3 ! + Z 4 / 5 !  if Z < 0 . 0 2 5 ,  

otherwise 

e x p ( -  A) Mo(Z  ) = 1 /2Z .  [ e x p ( Z -  A) - e x p ( -  Z -  A)] 

M l ( Z ) ~ Z . ( 2 / 3 ! w 4 Z z / 5 ! + 6 Z g / 7 [ + 8 Z 6 / 9 [ )  if Z < 0 . 1 ,  

otherwise 

e x p ( -  A) M1 (Z) = - 1/2Z 2. ((1 - Z).  e x p ( Z -  A) - (1 + Z)- e x p ( -  Z -  A)) 

M2(Z ) ~, Z 2- (2.4/5 ! + 4 .6Z2 /7  ! + 6- 8Z4/9 ! + 8.10Z6/11 ! + 10.12ZS/13 !) 

if Z <  0.37, 
otherwise 

e x p ( -  A) M 2 (Z) = 3/2Z 3- ((1 - Z + Z2/3) �9 e x p ( Z -  A) - (1 + Z + Z2/3). exp ( - Z -  A)) 
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